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Underappreciated problems of low replication in  
ecological field studies
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Abstract.   The cost and difficulty of manipulative field studies makes low statistical power a 
pervasive issue throughout most ecological subdisciplines. Ecologists are already aware that 
small sample sizes increase the probability of committing Type II errors. In this article, we 
address a relatively unknown problem with low power: underpowered studies must overesti-
mate small effect sizes in order to achieve statistical significance. First, we describe how low 
replication coupled with weak effect sizes leads to Type M errors, or exaggerated effect sizes. We 
then conduct a meta-analysis to determine the average statistical power and Type M error rate 
for manipulative field experiments that address important questions related to global change; 
global warming, biodiversity loss, and drought. Finally, we provide recommendations for 
avoiding Type M errors and constraining estimates of effect size from underpowered studies.

Key words:   Bayesian statistics; LASSO regression; power; priors; ridge regression; Type M error; Type 
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Introduction

The pervasiveness of global changes requires that 
ecologists accurately quantify the consequences of 
global change on community structure and ecosystem 
function. To obtain such estimates, ecologists simulate 
one or multiple aspects of global change (e.g., warming, 
biodiversity loss, or drought) using manipulative field 
experiments. Yet field experiments often yield equivocal 
results. Biodiversity has been reported as having var-
iable effects on ecosystem functioning (Cardinale et al. 
2011, Wardle 2016). Likewise, warming can stimulate 
(Cantarel et al. 2013), reduce (Cantarel et al. 2013), or 
have no effect (Biasi et al. 2008) on aboveground net 
primary productivity (ANPP), whereas drought effect 
sizes vary from small to large (Beier et  al. 2012). 
Undoubtedly, inconsistent results among studies arise 
partly from methodological differences, differing 
biotic/abiotic contexts, and temporal variation. 
However, we contend that contradictory results may 
also arise even in perfectly replicated studies as a 

consequence of low statistical power that by necessity 
plagues many global change experiments.

Importantly, we do not focus on the canonical definition 
of low power as the failure to correctly reject the null 
hypothesis (i.e., Type II error). That issue has been 
addressed repeatedly in ecological sciences (Peterman 
1990, Taylor and Gerrodette 1993, Jennions and Møller 
2003, Nakagawa 2004). Instead, we focus on the recent 
realization that low-powered experiments examining pro-
cesses that have small true effect sizes (μtrue) have a large 
probability of obtaining of a result of the wrong sign (i.e., 
a negative estimate of a positive μtrue, Type S error) and, 
by extension, must observe an overestimated effect size 
(μobs) in order to achieve statistical significance (i.e., Type 
M error; Ioannidis 2005, Button et al. 2013). The initial 
overestimate of effect sizes is referred to as the “winner’s 
curse” because subsequent experiments using similar 
underpowered studies often cannot replicate the result 
because the statistical significance of the initial research 
occurred by chance (Young et  al. 2008, Forstmeier and 
Schielzeth 2011, Button et al. 2013). The lack of reproduc-
ibility can intensify the debate over the ecological conse-
quences of global change, making it imperative to raise 
awareness of this lesser known aspect of low power. Here, 
we describe this overlooked aspect of power, examine its 
prevalence in global change studies, and provide ways to 
remedy this important issue in ecological studies.
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The Underappreciated Problem of Low Power

Most ecologists learn the well-established definition of 
statistical power in introductory statistics (Table 1). The 
Type II error rate (β) of an experiment is the probability 
that the analysis fails to reject the null hypothesis, H0, 
when an effect is truly present (Fig. 1A). The probability 
of correctly rejecting H0 (1 − β) constitutes the statistical 
power of a study (Fig. 1A). Power increases with sample 
size (N) because sampling uncertainty of the effect 
size  (σs) decreases with higher levels of replication 
(σs =σ∕

√

N). However, there is a second yet often unrec-
ognized consequence of statistical power: if μtrue is small, 
underpowered studies might reverse the sign of an effect 
and must considerably overestimate the magnitude of 
that effect to achieve significance at P ≤ 0.05 (Young et al. 
2008, Button et al. 2013).

Overestimates arise because the critical value (Z) for a 
given test is substantially larger than μtrue when μtrue is 
small and σs is large (Fig. 1B). Since μobs ≥ Z is necessary 
for statistical significance, low power forces μobs to be 
much greater than μtrue (Fig. 1B). The ratio Z : μtrue is the 

Type M error rate and quantifies the proportion by which 
the critical value must exceed the effect size in order to 
achieve statistical significance. (Gelman and Carlin 
2014). For example, consider an experiment with a small 
effect size but highly variable data: μtrue = 0.75 and σ = 4. 
A study with N  =  10 yields σs  =  1.27 and Z  =  2.86. 
Therefore, μobs must be ≥2.86 to achieve significance at 
P ≤ 0.05, a Type M error of 3.8 (Fig. 1B). Additionally, 
highly uncertain σs contains both positive and negative 
tails, and the probability that μobs falls in the tail of 
incorrect sign is termed a Type S error. In this example, 
28.4% of σs is negative despite a positive μtrue, such that 
the Type S error rate is 0.284 (Fig. 1B). Replicate studies 
with similar sample sizes will likely not find a significant 
result because most of the sampling distribution falls 
below the critical value (Fig. 1B), leading to the “winner’s 
curse” and contradictory patterns in the literature.

Increasing replication to N = 50 significantly shrinks σs 
and Z, leading to higher power, an increased likelihood 
of repeatability, a lower Type S error rate of 0.096, and a 
lower Type M error of ~1.5 (Fig. 1C). Indeed, Type M 
errors rapidly decline to an asymptote as N increases 

Table 1.  Definitions of common terms.

Term Definition

Type I error rate the probability of incorrectly rejecting a true null hypothesis
Type II error rate the probability of incorrectly accepting a false null hypothesis
Statistical power the probability that a study correctly rejects the null hypothesis (1 − Type II error)
Effect size the standardized change in a response variable (i.e., Cohen’s d )
Critical value the value of a test statistic (e.g., t value, chi-squared value) needed to achieve statistical 

significance at α = 0.05
Type M error/Exaggeration ratio the ratio of the critical value to the true effect size, such that Type M errors denote the 

magnitude by which an effect size must be overestimated in order to achieve significance
Winner’s curse the first, often high-profile paper, reports results that cannot be reproduced in subsequent 

experiments because the true effect size is small and the first study overestimated the 
effect size by chance

Fig. 1.  (A) The Type I error rate (α) is the area of the null distribution (H0) that falls beyond the critical value (dashed line). The 
Type II error rate (β) is the portion of the observed sampling distribution (H1) that falls below the critical value. Statistical power is 
the portion of the observed sampling distribution that falls above the critical value. (B) If a study has low power, the critical value 
needed to achieve significance at P ≤ 0.05 can be much larger than the true effect size, leading to overestimates of the effect size and 
irreproducible results. This example depicts μtrue = 0.75 and standard deviation of the data σ = 4. With N = 10 replicates, the critical 
value is 2.86, which is over 3.8× larger than the true effect size. In this case, statistical power is 0.065. (C) Increasing replication to 
N = 50 yields increased power of 0.25. The critical value shrinks to 1.14, which is only ~1.5× larger than the true effect size. Panels 
B and C are adapted from http://andrewgelman.com/2014/11/17/power-06-looks-like-get-used/.
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(Fig. 2), meaning that Type M errors decline rapidly with 
increasing power (Gelman and Carlin 2014). As a conse-
quence, ecologists can minimize Type M errors with rel-
atively low N, although the minimum Type M error for a 
study might still be quite large (Fig. 2). Naturally, large 
μtrue, low σ, and high N will all increase the power of a 
study and reduce potential Type M errors. The practical 
consequence is that ecologists must be cognizant of μtrue, 
or at least an expectation of its magnitude, prior to any 
statistical analyses. At a minimum, prior knowledge of 
μtrue allows ecologists to calculate Type M errors and 
raises awareness of potential overestimates. At best, ecol-
ogists can incorporate prior estimates of μtrue into 
Bayesian analyses that yield a posterior distribution the 
balances prior and new information.

Identifying Low Power in Ecological Studies

To determine the extent to which Type M errors 
pervade ecological field studies, we conducted a meta-
analysis of three important ecological questions related 
to the effects of global change on ecosystem function: 
(1) What are the effects of warming on plant growth or 
aboveground net primary production (ANPP)? (2) What 
are the effects of biodiversity on ANPP or soil resource 
concentrations? (3) How does drought affect plant 
biomass or ANPP? These span a range of potential eco-
system effects that we predicted would have small, 
medium, and large μtrue, respectively.

As a first step, we identified contemporary meta-
analyses on each subject in order to obtain the relevant 
primary literature. We then supplemented each meta-
analysis with a second literature search using Web of 
Science in order to update each database to November 
2015 (Appendix S1: Fig. S1, Appendix S3: Data S1). We 

conducted a separate meta-analysis for each question, 
which provided estimates of μtrue, σs, statistical power, 
and Type M error rate for each study (Button et al. 2013; 
Appendix S2, Appendix S3: Data S2).

Warming Effects on ANPP

Overall, warming had a significant effect on plant 
biomass and growth (P < 0.001), although μtrue was small 
(0.56, CI95  =  0.42–0.69). Warming experiments had 
extraordinarily low statistical power due to the combi-
nation of low replication (N = 9 ± 7 per treatment), a 
small μtrue, and highly variable data (σ  =  84.9  ±  93.1; 
Fig. 3). Average power was 0.06 ± 0.02, and the highest 
power was only 0.14. Interestingly, power had no rela-
tionship with the number of replicates (P = 0.846) but did 
have a positive correlation with duration (P  <  0.001). 
However, the positive relationship between study 
duration and power was driven by three experiments 
from a single 22-yr study. Removal of this study negated 
any influence of duration on statistical power (P = 0.488). 
Type M errors were generally large, averaging 3.29 ± 0.23. 
As a consequence, studies examining warming effects on 
plant biomass must either commit a Type II error or over-
estimate μtrue by more than threefold in order to achieve 
statistical significance at P ≤ 0.05.

Biodiversity–Ecosystem Function

Biodiversity effects on ecosystem productivity were, 
as expected, moderate (P  <  0.001, μtrue  =  1.22, 
CI95 = 0.96–1.48), yielding higher average power than 
warming experiments (0.22  ±  0.30). Seven studies 
achieved power >0.8, although 70% of experiments (40) 
had power < 0.2 (Fig.  3). This bimodality was driven 
mostly by three experiments with abnormally high 
power: the Cedar Creek LTER (BioCON, and 
Biodiversity II experiments) and BIODEPTH experi-
ments, all of which had a large number of replicates. 
However, neither sample size (P = 0.949) nor duration 
(P = 0.926) were related to statistical power. Despite low 
power, the moderate μtrue of biodiversity yielded lower 
Type M error rates, averaging 1.42  ±  0.08. Such low 
Type M error rates suggest that biodiversity studies 
need only exaggerate the effect by ~1.5× in order to 
achieve statistical significance.

Drought Effects on ANPP

Overall, drought strongly affected ANPP (P < 0.001, 
μtrue = 2.91, CI95 = 1.79–4.03). Still, 61% of studies had 
power <0.1 and only 12% had power >0.5 (Fig.  3). 
Increased replication led to significantly higher power 
(P < 0.001), although this trend was driven by one study 
(two experiments) with 50 replicates. Removal of these 
negated any effect of replication on power (P = 0.751). 
Study duration had no effect on statistical power 
(P = 0.829). Despite low power, Type M error rates were 

Fig. 2.  Exaggeration ratio of the critical value needed for 
significance at various μtrue. Increasing sample size reduces the 
exaggeration ratio with diminishing returns. An exaggeration 
ratio of 1 indicates that the critical value equals the effect size 
(dashed line). All calculations were performed with σ = 4.



October 2016 2557LOW POWER IN FIELD STUDIES
S

ta
tistica

l R
ep

orts

typically low, averaging 0.66 ± 0.1. That Type M errors 
are <1 for most studies suggests that the overall effect 
size  is nearly always greater than the critical value 
needed  to detect statistical significance. As a result, an 

underpowered drought study is at greater risk of com-
mitting a Type II error than a Type M error.

Overall Patterns

Based on the above conclusions, it is worth considering 
what factors yield high power and low Type M errors. 
Interestingly, statistical power did not depend on either 
the difference between treatments or replication, but 
instead declined sharply as data variance increased 
(Fig. 4A). Type M error rates, however, did not depend 
upon data variability but instead declined within 
increasing sample size, as expected (Figs. 2, 4B). Also as 
expected, Type M error rates were lowest for those 
responses with the largest μtrue (Fig. 4B).

Remedies and Future Directions

Ecological field experiments consistently demonstrated 
low statistical power. Such low power has long been iden-
tified as problematic with respect to Type II error rates 
(Peterman 1990, Jennions and Møller 2003, Wardle 2016). 
Here, we described a second, underappreciated aspect of 
low power: poorly replicated studies must overestimate 
μtrue in order to achieve statistical significance (Ioannidis 
2005, Young et al. 2008, Button et al. 2013). The relevant 
question is then: what are the best practices to maximize 
statistical power and minimize Type M errors?

High sample sizes are ostensibly the most obvious 
answer. Indeed, increased replication reduced Type M 
errors as expected (Figs. 2, 4B), but sample size had no 
relationship with statistical power (Appendix S1: Figure 
S2). Instead, power was lowest for highly variable data, a 
common aspect of field experiments that is difficult for 
ecologists to mitigate. Furthermore, increasing N can 
only partially alleviated Type M errors in the face of high 
data variability and small μtrue (Figs.  2, 4B). Finally, 
levels of replication required to achieve adequate power 
can be cost-prohibitive, with N  >  100 necessary to 
minimize Type M errors and maximize power in many 
cases (similar to values reported by Button et al. 2013). 
Given that increased sample sizes can only partially offset 
the issues of low power and Type M errors, we must seek 
changes to the underlying principles of reporting and 
judging ecological results.

Previous authors advocated that nonsignificant 
findings be complemented by “observed power” calcula-
tions (Peterman 1990, Jennions and Møller 2003). These 
calculations assume that μobs and σ2

s
 in a study represent 

μtrue and σ2
s
 for use in power calculations (e.g., Lemoine 

and Valentine 2012). We strongly advise against this cir-
cular approach because “observed power” is a direct 
function of the P value; low P values yield high power by 
default and vice versa (Hoenig and Heisey 2001). 
“Observed power” therefore provides no new infor-
mation beyond the P-value. Instead, we propose three 
changes to reporting of results and statistical practice 
that help offset the overestimation of μtrue.

Fig.  3.  Histograms of statistical power for warming, 
biodiversity–ecosystem function (BEF), and drought experiments.
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Calculate type M error

Instead of “observed power,” we recommend that ecol-
ogists calculate the Type M error. This quantity is inde-
pendent of the reported P value and instead relies on an 
estimate of μtrue obtained from independent sources (e.g., 
meta-analysis). If no or few previous studies are available, 
researchers can use single studies or pilot studies to 
inform μtrue. Calculating the Type M error provides three 
advantages: First, by requiring ecologists to estimate 
μtrue, Type M error calculations force ecologists to be 
aware of the expected effect size and the statistical power 
of their own study. Second, emphasizing Type M errors 
reminds ecologists not to interpret μobs as immutable but 
rather to understand that μobs is subject to chance and 
uncertainty. Third, Type M error calculations provide an 
easily interpretable metric to determine if findings exag-
gerate the true effect. Scripts in the R statistical language 
are readily available for Type M error calculations and 
examples are given in Appendix S3: Data S3 (Gelman 
and Carlin 2014).

A statement of Type M error would ideally follow 
reporting of significant results in low-powered studies. 
For example, “Warming significantly increased the 
number of flowers produced by Oenothera biennis over 
the growing season by 200 ± 40 (P < 0.001). However, 
given our small sample size and that most effects of 
warming on flower production are considerably weaker, 

we calculated the Type M error of our study as 1.7. The 
average increase in O. biennis flower production due to 
warming is therefore probably smaller than reported 
here.” This statement neither reduces the impact nor 
weakens the conclusions of the experiment; warming still 
has a positive effect on flower production. Rather, the 
statement gives a more informative account that the true 
effect may be lower than the reported effect, which would 
enable subsequent experiments to accurately validate the 
effects of warming on flowering.

Remove statistical dichotomies; report effect sizes and 
uncertainty for all results

Reporting Type M errors, as suggested above, shifts 
the emphasis of statistical analyses from achieving statis-
tical significance towards providing accurate estimates of 
effect size. In fact, many statistical issues, including Type 
II errors, Type M errors, and publication bias, stem from 
the current emphasis on dichotomous significance; results 
are either significant at P  ≤  0.05 or considered unim-
portant. This philosophy relegates biological significance 
to a secondary concern behind statistical significance 
(Nakagawa and Cuthill 2007). We join others in calling 
for a shift in the statistical paradigm away from thresholds 
for statistical significance (Nakagawa and Cuthill 2007, 
Hurlbert and Lombardi 2009, Cumming 2014) and argue 
that ecologists should emphasize effect sizes and 

Fig. 4.  (A) Relationship between statistical power and the pooled standard deviation σ of each study (see Appendix S2 and 
Appendix S3: Data S2 for calculations). (B) Relationship between Type M error and sample size N for each study. Dashed line 
indicates a Type M error, or exaggeration ratio, of 1, where the critical value equals the effect size.

A

B
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confidence intervals (Colegrave and Ruxton 2003). Even 
R. A. Fisher eventually acknowledged that P values 
should be interpreted fluidly as a measure of relative 
support for the null hypothesis (Hurlbert and Lombardi 
2009, Murtaugh 2014). However, we do not advocate 
entirely abandoning P values in favor of other methods, 
e.g., information criteria (IC), as others recently have 
(Anderson and Burnham 2002, Barber and Ogle 2014, 
Burnham and Anderson 2014). Researchers often subject 
IC and Bayesian methods to arbitrary thresholds of sig-
nificance similar to the P ≤ 0.05 rule of significance, i.e., 
∆AIC < 2 for IC methods (e.g., Lemoine et al. 2014) or 
Bayesian significance testing using 95% posterior credible 
intervals (Gelman and Hill 2007, Kruschke 2010). We 
propose that the algorithm used to estimate parameters 
(e.g., least squares, maximum likelihood, Markov chains) 
is irrelevant when the results are subject to significance 
testing (Forstmeier and Schielzeth 2011). Rather, the 
major philosophical advance is to avoid binning results 
into “significant” and “not significant” categories based 
on an arbitrary value of any summary statistic.

By tempering significance testing (i.e., P ≤ 0.05) as the 
primary criterion for publication and scientific impact, ecol-
ogists can shift the focus of their analyses from statistical 
significance to effect sizes (Nakagawa and Cuthill 2007). 
Emphasizing accurate estimates of effect sizes would prior-
itize minimizing Type M as opposed to Type II errors. This 
philosophy inherently forces ecologists to discuss the mag-
nitude and “biological significance” of their results as 
opposed to categorical differences, and will encourage 
placing results in the context of previous effect sizes 
(Nakagawa and Cuthill 2007). The practical implication 
would be for researchers to complement all P values with 
effect sizes and confidence intervals, including post hoc mul-
tiple comparisons (Colegrave and Ruxton 2003). All too 
often, nonsignificant results are dismissed with no mention 
of effect sizes. Yet, nonsignificant results could potentially 
be as important as results that meet the P ≤ 0.05 criteria.

Consider an experiment designed to assess the effects of 
warming on flower production of Oenothera biennis with 
n  =  5 per temperature treatment. Over the course of a 
growing season, O. biennis produces ~900 ± 100 flowers at 
ambient temperatures (Lemoine et al., unpublished manu-
script). Suppose warming increases the number of flowers 
produced throughout the course of the growing season by 
20 ± 6, (CI95 = 3.3–36.7). Although this result is over three 
standard deviations from zero and significant at P = 0.002, 
it represents a negligible fraction of total flower production 
(~2%). Suppose instead that warming increases flower pro-
duction by 300  ±  275, a result that is not significant at 
P ≤ 0.05 (CI95 = −463 to 1,063.5). Because P = 0.07, the 
CI95 includes zero but still indicates that it is highly pos-
sible that warming will substantially increase the number 
of flowers, potentially by 100%. In this example, the latter 
situation represents a potentially larger effect on O. biennis 
flowering than the former situation but would be dismissed 
as less important if adhering strictly to criteria based on 
P  ≤  0.05. Thus, reporting effect sizes and confidence 

intervals can help ecologists assess the biological impor-
tance of both significant and non-significant results.

Bayesian statistics

Although potentially more controversial, Bayesian 
statistics can resolve many of the issues related to low 
statistical power and are becoming increasingly popular 
for testing a variety of ecological hypotheses (Ellison 
2004, Arhonditsis et al. 2006, Price et al. 2009, Thomson 
et al. 2010, Vieilledent et al. 2010). One of the principal 
advantages of Bayesian statistics, and perhaps its most 
contentious issue, is the ease with which researchers can 
assign prior information to all parameters and effect 
sizes. However, the ability of priors to influence the 
results might make some ecologists understandably 
uneasy with Bayesian statistics.

To demonstrate the influence of priors on posterior 
distributions, it is first necessary to realize that the 
Bayesian posterior distribution of a parameter given the 
data, Pr(θ|Y), is proportional to the product of the like-
lihood of the data given the parameter (L(Y|θ)) and the 
prior density (Pr(θ)): 

The posterior can be thought of as a weighted average 
of the likelihood and prior with weights corresponding to 
sample sizes. Consider a random variable y with an esti-
mated mean ȳ and a known standard deviation σobs. We 
are interested in estimating the posterior distribution of 
the mean of the data, μpost. The posterior distribution for 
the mean is N(μpost, τ

2
post

), estimated by 

and 

From these equations, it should be apparent that, as 
sample size (N) increases, the prior becomes less influential 
and the posterior distribution of the mean, μpost, and sam-
pling uncertainty, τ2

post, are dominated by the data 
(Appendix S1: Fig. S3). In other words, the larger the 
sample size, the more strongly we update our prior infor-
mation about parameter values. Although this is a sim-
plistic example, the general principle holds for all Bayesian 
models and posterior distributions (Appendix S1: Fig. S4).

Currently, most practitioners use uninformative prior 
distributions that are flat over the relevant range of 
parameters (e.g., N(0, 1,000) for unbounded continuous 
variables, Beta(1, 1) for probabilities, U(lower, upper) in 
the rare case that parameters have known lower and 
upper limits). With such priors, Bayesian posterior distri-
butions converge to maximum likelihood estimates 

Pr (θ|Y)∝L(Y|θ) Pr (θ).

μpost =

1

σ2
prior

μprior+
N

σ2
obs

ȳ

1

σ2
prior

+
N

σ2
obs

τ2
post

=
1

1

σ2
prior

+
N

σ2
obs

.
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(Gelman et al. 2013) and do not alleviate the issue of Type 
M error. Informative priors, however, constrain esti-
mated effect sizes to believable values in the presence of 
small sample sizes and, when combined with thorough 
reporting of effect sizes described above, represent an 
ideal solution to the problem of Type M errors and the 
“winner’s curse” (Hoenig and Heisey 2001).

The choice of priors is one of the most contentious issues 
in Bayesian statistics. Ideally, informative priors would be 
based on information regarding μtrue derived from meta 
analyses, literature searches, or preliminary experiments 
(Garamszegi et al. 2009). Analyses using strongly inform-
ative priors should always be coupled with analyses using 
weak or uninformative priors to demonstrate the sensi-
tivity of conclusions to prior information. In the absence 
of prior information, we advocate standardizing the 
response variable and placing a weakly informative prior 
of N(0, 1) on all effects. This prior assumes that most 
effects will be within one standard deviation of the mean 
and very few effects will be larger than two standard devi-
ations, although careful consideration of the scale of pre-
dictors is necessary as well. In fact, Bayesian regression 
with standard normal priors is analogous to ridge 
regression, which penalizes overly large coefficient esti-
mates. The more severe Laplace prior, which concentrates 
most of the prior distribution near 0, can be used in lieu of 
the standard normal prior and is identical to LASSO 
regression. In these regression techniques (Bayesian, ridge, 
LASSO), studies with small sample sizes and extremely 
large estimated effects will have posteriors shrunk towards 
0 (Appendix S1: Figs. S3, S4, Box  1). Such shrinkage 
makes Bayesian analyses with informative priors more 
conservative than frequentist analyses and helps prevent 
the erroneous estimation of large effect sizes in under-
powered studies (e.g., Lemoine and Shantz 2016).

By adhering to these suggestions, ecologists can avoid the 
pitfalls of overstating results arising from underpowered 
and poorly replicated experiments, which given the logis-
tical and fiscal constraints of many studies is a common 
occurrence in ecology. The “winner’s curse” leads to irre-
producible research and can generate debate about con-
trasting results that, instead, may simply reflect sampling 
uncertainty associated with weak and variable effect sizes. 
At the very least, providing confidence intervals and Type 
M errors will help ecologists and policy-makers assess the 
true effect size and its potential variation. At most, Bayesian 
statistics provide researchers with the ability to constrain 
posteriors to believable values unless strongly supported by 
the data and backed up by numerous observations (Box 1). 
Ecologists can and should debate the true effect size, which 
may differ among ecosystems, with different experimental 
methods, or among different study organisms. What is not 
debatable, however, is that underpowered studies addressing 
issues with small true effect sizes must overestimate the size 
of the effect in order to find statistical significance. Ecologists 
need to be aware of this issue in order to avoid the pitfalls of 
Type M errors and irreproducible research.

Acknowledgments

This work was supported by a USDA NIFA-AFRI Post
doctoral Fellowship (2016-67012-25169) to N. P. Lemoine and 
a grant from the National Natural Science Foundation of China 
(41320104002) to Q. Y. and M. D. S. We would like to thank 
Brian Inouye and two anonymous reviewers for their helpful 
comments. Dr. Andrew Gelman provided much of the inspira-
tion for this manuscript.

Literature Cited

Anderson, D. R., and K. P. Burnham. 2002. Avoiding pitfalls 
when using information-theoretic methods. Journal of 
Wildlife Management 66:912–918.

Box 1. Example of Bayesian analyses using various priors.
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